Adaptive example-based super-resolution using kernel PCA with a novel classification approach

نویسندگان

  • Takahiro Ogawa
  • Miki Haseyama
چکیده

An adaptive example-based super-resolution (SR) using kernel principal component analysis (PCA) with a novel classification approach is presented in this paper. In order to enable estimation of missing high-frequency components for each kind of texture in target low-resolution (LR) images, the proposed method performs clustering of high-resolution (HR) patches clipped from training HR images in advance. Based on two nonlinear eigenspaces, respectively, generated from HR patches and their corresponding low-frequency components in each cluster, an inverse map, which can estimate missing high-frequency components from only the known lowfrequency components, is derived. Furthermore, by monitoring errors caused in the above estimation process, the proposed method enables adaptive selection of the optimal cluster for each target local patch, and this corresponds to the novel classification approach in our method. Then, by combining the above two approaches, the proposed method can adaptively estimate the missing high-frequency components, and successful reconstruction of the HR image is realized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Image Super-Resolution via Adaptive Joint Kernel Regression

Single image super-resolution (SR) methods can be broadly categorized into three classes: interpolation-based methods, reconstruction-based methods [7], and example-based methods [2, 3, 6]. The reconstruction-based methods often incorporate prior knowledge to regularize the ill-posed problem. For example, Zhang et al. [7] assembled the Steering Kernel Regression [5] (SKR)-based local prior and ...

متن کامل

Face Recognition Using Cca on Nonlinear Features

The face recognition (FR) system plays a vital role in commercial & law enforcement applications. Image resolution is an important factor affecting face recognition performance. The performance of face recognition system degrades by low resolution of face images. To address this problem, a super resolution (SR) method was introduced by Hua Huang and Huiting He [7], which uses Canonical correlat...

متن کامل

A Modified Adaptive PCA Learning based Method for Image Denoising

The paper deals with image denoising with a new approach towards obtaining high quality denoised image patches using only a single image. A learning technique is proposed to obtain highly correlated image patches through sparse representation, which are then subjected to matrix completion to obtain high quality image patches. this paper show a framework for denoising by learning an appropriate ...

متن کامل

Improving Super-resolution Techniques via Employing Blurriness Information of the Image

Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a number of low resolution (LR) images from the same scene. One of the degradations that attenuates performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the im...

متن کامل

Super-resolution of Defocus Blurred Images

Super-resolution is a process that combines information from some low-resolution images in order to produce an image with higher resolution. In most of the previous related work, the blurriness that is associated with low resolution images is assumed to be due to the integral effect of the acquisition device’s image sensor. However, in practice there are other sources of blurriness as well, inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011